Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(–)-Dimethyl 3,3'-diphenyl-2,2'-[pyridine-2,6-divlbis(carbonylimino)]dipropanoate

Shaohong Yin, Yu Cui, Guangming Xia, Yanju Zhang and **Guoxin Sun***

School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China Correspondence e-mail: chm_sungx@ujn.edu.cn

Received 14 June 2009; accepted 20 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.046; wR factor = 0.134; data-to-parameter ratio = 7.6.

The title compound, C₂₇H₂₇N₃O₆, a bis-amide derivative, is also a chiral amino acid ester with L-phenylalanine methyl ester groups as amine substituents. The pyridine ring is oriented at dihedral angles of 89.69 (3) and 62.95 (3)° with respect to the phenyl rings, while the dihedral angle between the phenyl rings is $60.76 (3)^\circ$. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into chains. One of the carbonyl O atoms and one of the methoxy CH₃ groups are disordered over two positions. The O atom was refined with occupancies of 0.69 (13) and 0.31 (13), while C and H atoms were refined with occupancies of 0.69 (8) and 0.31 (8).

Related literature

For general background, see: Darshan et al. (1998). For related structures, see: Amr et al. (1999); Moriuchi et al. (2006). For bond-length data, see: Allen et al. (1987).

0 0 NH HN

Experimental

Crystal data

V = 2530 (2) Å ³
V = 2550 (2) R Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 293 K
$0.15 \times 0.10 \times 0.10 \ \mathrm{mm}$

Data collection

Bruker SMART CCD area-detector	12674 measured reflections
diffractometer	2650 independent reflections
Absorption correction: multi-scan	1929 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.040$
$T_{\min} = 0.986, \ T_{\max} = 0.991$	

Refinement

349 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdotsO1^{i}$	0.86	2.37	3.178 (4)	157
$N3-H3\cdots O1^{i}$	0.86	2.40	3.190 (4)	154

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Key Subject Research Foundation of Shandong Province (grant No. XTD0704) and Shandong Province Education Department (grant No. J07YC10) for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2713).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Amr, A. E., Abd El-Salam, O. I., Attia, A. E. & Stibor, I. (1999). Collect. Czech. Chem. Commun. 64, 288-298.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Darshan, R., Haridas, V., Gilardi, R. & Isabella, L. K. (1998). J. Am. Chem. Soc. 120, 10793-10800.

Moriuchi, T., Shen, X. & Hirao, T. (2006). Tetrahedron, 62, 12237-12246. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o1713 [doi:10.1107/S1600536809023721]

(-)-Dimethyl 3,3'-diphenyl-2,2'-[pyridine-2,6-diylbis(carbonylimino)]dipropanoate

S. Yin, Y. Cui, G. Xia, Y. Zhang and G. Sun

Comment

The chiral bisamide derived from pyridine-2,6-dicarboxylic acid and natural amino acids adopts spontaneously relatively rigid conformation reinforced by bifurcated hydrogen bonding between NH of carboxamides at positions 2 and 6 of the pyridine nucleus and its nitrogen (Darshan *et al.*, 1998). This finding makes this kind of structures very promising for biological activities and as precursors in the syntheses of various compounds.

In the structure of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N1/C2-C6), B (C11-C16) and C (C21-C26) are, of course, planar and the dihedral angles between them are A/B = 89.69 (3), A/C = 62.95 (3) and B/C = 60.76 (3)°, respectively. The absolute configuration was determined by comparison with Amr *et al.* (1999) and according to the known S configuration at the C atom to which the benzyl group is attached. Both of C9 and C19 are chiral atoms in the structure. The pyridine-2,6-dicarboxamide core approximates C_2 point symmetry. Such a feature seems to be common for symmetrically substituted pyridine-2,6-dicarboxamide derivatives.

In the crystal structure, intermolecular N—H…O hydrogen bonds (Table 1) link the molecules into chains, in which they may be effective in the stabilization of the structure.

Experimental

The title compound was synthesized by a slight modification of the literature method (Moriuchi *et al.*, 2006). To a stirred mixture of L-phenylalanine methyl ester hydrochloride (129.4 mg, 0.6 mmol) in dry dichloromethane (15 ml) and triethyl-amine (0.21 ml, 1.5 mmol) was added dropwise 2,6-pyridyldicarbonyl dichloride (61.2 mg, 0.3 mmol) in dichloromethane (3 ml) at 273 K, and then stirred for 18 h at room temperature. The resulting mixture was diluted with dichloromethane, washed with saturated NaHCO₃ solution and brine, and then dried over anhydrous MgSO₄. The solvent was evaporated *in vacuo*. The title compound was isolated as a colorless solid by recrystallization from ethanol (yield; 117.5 mg, 80%; m.p. 403-404 K, enantiomeric excess >99%). Crystals suitable for X-ray analysis were obtained from the mixed solution of ethanol and diisopropyl ether by slow evaporation over a period of several days. $C_{27}H_{27}N_3O_6$: C 66.25, H 5.56, N 8.58%; found: C 66.11, H 5.46, N 8.64%. IR (KBr): v = 3398, 3333, 3028, 1745, 1678, 1523 cm⁻¹.

Refinement

The O4, C27, H27A, H27B and H27C atoms were disordered. During the refinement process, the disordered C and H atoms were refined with occupancies of 0.69 (8) and 0.31 (8), while O atom was refined with occupancies of 0.69 (13) and 0.31 (13). H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.

(-)-Dimethyl 3,3'-diphenyl-2,2'-[pyridine-2,6-diylbis(carbonylimino)]dipropanoate

$F_{000} = 1032$
$D_{\rm x} = 1.285 \ {\rm Mg \ m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2406 reflections
$\theta = 2.3 - 20.1^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
<i>T</i> = 294 K
Prism, colorless
$0.15\times0.10\times0.10\ mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2650 independent reflections
Radiation source: fine-focus sealed tube	1929 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
T = 293 K	$\theta_{\text{max}} = 25.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 11$
$T_{\min} = 0.986, T_{\max} = 0.991$	$k = -11 \rightarrow 10$
12674 measured reflections	$l = -33 \rightarrow 32$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.134$	$w = 1/[\sigma^2(F_0^2) + (0.1P)^2 + 0.1227P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2650 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$

349 parameters

 $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.2953 (3)	0.1251 (2)	-0.02271 (8)	0.0591 (6)	
02	0.6669 (3)	0.1803 (3)	0.19298 (10)	0.0826 (9)	
O3	0.5457 (4)	0.3451 (4)	-0.13664 (12)	0.1087 (12)	
O4	0.687 (6)	0.228 (3)	-0.0887 (8)	0.101 (8)	0.69 (13)
O4'	0.614 (14)	0.190 (8)	-0.0963 (17)	0.101 (18)	0.31 (13)
05	0.5417 (3)	0.5103 (4)	0.17725 (10)	0.1148 (13)	
O6	0.6902 (3)	0.4951 (4)	0.23889 (10)	0.0983 (11)	
N1	0.5319 (3)	0.1704 (3)	0.07475 (9)	0.0469 (6)	
N2	0.4923 (3)	0.2592 (3)	-0.01478 (9)	0.0536 (7)	
H2	0.5678	0.2767	0.0025	0.064*	
N3	0.7013 (3)	0.3214 (3)	0.13144 (10)	0.0529 (7)	
Н3	0.6951	0.3330	0.1009	0.063*	
C1	0.4044 (3)	0.1610 (3)	-0.00050 (11)	0.0458 (8)	
C2	0.4433 (3)	0.0987 (3)	0.04660 (11)	0.0471 (8)	
C3	0.3850 (4)	-0.0227 (3)	0.06022 (14)	0.0580 (9)	
H3A	0.3274	-0.0720	0.0391	0.070*	
C4	0.4132 (4)	-0.0703 (4)	0.10552 (16)	0.0751 (12)	
H4	0.3743	-0.1520	0.1156	0.090*	
C5	0.4999 (4)	0.0044 (4)	0.13576 (14)	0.0686 (10)	
Н5	0.5191	-0.0246	0.1669	0.082*	
C6	0.5579 (4)	0.1239 (3)	0.11873 (12)	0.0522 (8)	
C7	0.6480 (4)	0.2102 (4)	0.15113 (13)	0.0556 (9)	
C8	0.5704 (5)	0.2909 (4)	-0.09640 (15)	0.0655 (11)	
С9	0.4695 (4)	0.3387 (3)	-0.05746 (12)	0.0535 (8)	
Н9	0.3687	0.3254	-0.0683	0.064*	
C10	0.4920 (4)	0.4888 (4)	-0.04709 (13)	0.0603 (9)	
H10A	0.5885	0.5015	-0.0334	0.072*	
H10B	0.4885	0.5379	-0.0772	0.072*	
C11	0.3809 (4)	0.5473 (3)	-0.01345 (13)	0.0556 (9)	
C12	0.2661 (5)	0.6211 (5)	-0.03059 (18)	0.0831 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12	0.2566	0.6349	-0.0635	0.100*	
C13	0.1648 (5)	0.6748 (5)	0.0002 (3)	0.1036 (18)	
H13	0.0881	0.7256	-0.0121	0.124*	
C14	0.1745 (7)	0.6555 (6)	0.0479 (3)	0.111 (2)	
H14	0.1050	0.6917	0.0685	0.133*	
C15	0.2870 (9)	0.5825 (5)	0.0652 (2)	0.116 (2)	
H15	0.2950	0.5683	0.0981	0.139*	
C16	0.3896 (6)	0.5291 (5)	0.03496 (16)	0.0873 (14)	
H16	0.4666	0.4796	0.0477	0.105*	
C17	0.6428 (7)	0.3105 (6)	-0.17656 (16)	0.1132 (19)	
H17A	0.6814	0.2216	-0.1717	0.170*	
H17B	0.7218	0.3740	-0.1780	0.170*	
H17C	0.5891	0.3131	-0.2062	0.170*	
C18	0.6648 (4)	0.4771 (5)	0.19758 (15)	0.0697 (11)	
C19	0.7696 (4)	0.4234 (4)	0.16093 (12)	0.0551 (9)	
H19	0.8507	0.3809	0.1782	0.066*	
C20	0.8326 (5)	0.5343 (4)	0.12987 (13)	0.0701 (11)	
H20A	0.9090	0.4966	0.1098	0.084*	
H20B	0.7565	0.5681	0.1088	0.084*	
C21	0.8940 (4)	0.6484 (4)	0.15781 (13)	0.0634 (10)	
C22	0.8182 (6)	0.7669 (4)	0.16388 (15)	0.0797 (12)	
H22	0.7274	0.7766	0.1493	0.096*	
C23	0.8722 (6)	0.8708 (5)	0.19077 (17)	0.0904 (14)	
H23	0.8181	0.9494	0.1945	0.108*	
C24	1.0036 (6)	0.8593 (5)	0.21183 (15)	0.0843 (13)	
H24	1.0415	0.9304	0.2297	0.101*	
C25	1.0805 (5)	0.7442 (5)	0.20703 (16)	0.0881 (14)	
H25	1.1707	0.7355	0.2221	0.106*	
C26	1.0258 (5)	0.6390 (5)	0.17983 (16)	0.0797 (12)	
H26	1.0804	0.5605	0.1766	0.096*	
C27	0.440 (2)	0.592 (5)	0.2070 (10)	0.135 (10)	0.69 (8)
H27A	0.3787	0.5336	0.2256	0.202*	0.69 (8)
H27B	0.3802	0.6469	0.1864	0.202*	0.69 (8)
H27C	0.4951	0.6491	0.2281	0.202*	0.69 (8)
C27'	0.425 (4)	0.506 (11)	0.220 (2)	0.135 (17)	0.31 (8)
H27D	0.4288	0.4196	0.2350	0.202*	0.31 (8)
H27E	0.3294	0.5207	0.2067	0.202*	0.31 (8)
H27F	0.4475	0.5751	0.2425	0.202*	0.31 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0541 (13)	0.0687 (15)	0.0544 (14)	-0.0128 (12)	-0.0117 (12)	-0.0002 (12)
O2	0.098 (2)	0.098 (2)	0.0523 (17)	-0.0263 (19)	-0.0149 (16)	0.0129 (15)
O3	0.130 (3)	0.128 (3)	0.068 (2)	0.034 (2)	0.019 (2)	0.033 (2)
O4	0.099 (18)	0.123 (9)	0.080 (5)	0.045 (11)	0.009 (7)	0.010 (5)
O4'	0.10 (4)	0.123 (19)	0.080 (11)	0.05 (2)	0.009 (16)	0.010 (11)
O5	0.077 (2)	0.192 (4)	0.076 (2)	0.046 (2)	-0.0100 (17)	-0.047 (2)

O6	0.099 (2)	0.141 (3)	0.0547 (17)	0.011 (2)	-0.0081 (17)	-0.0303 (18)
N1	0.0451 (14)	0.0508 (14)	0.0448 (16)	-0.0010 (13)	0.0018 (12)	0.0015 (12)
N2	0.0489 (14)	0.0586 (16)	0.0533 (17)	-0.0097 (14)	-0.0105 (13)	0.0049 (14)
N3	0.0620 (17)	0.0578 (17)	0.0389 (15)	-0.0040 (15)	-0.0052 (14)	-0.0047 (13)
C1	0.0412 (16)	0.0472 (17)	0.0491 (19)	0.0007 (15)	0.0007 (15)	-0.0056 (15)
C2	0.0454 (17)	0.0494 (18)	0.0466 (19)	0.0011 (15)	-0.0019 (15)	-0.0021 (15)
C3	0.055 (2)	0.051 (2)	0.068 (2)	-0.0062 (16)	-0.0075 (18)	0.0033 (18)
C4	0.076 (3)	0.062 (2)	0.088 (3)	-0.015 (2)	-0.011 (2)	0.020 (2)
C5	0.076 (2)	0.068 (2)	0.062 (2)	-0.009 (2)	-0.008 (2)	0.0157 (19)
C6	0.0499 (18)	0.0537 (19)	0.053 (2)	-0.0023 (16)	-0.0027 (16)	0.0035 (16)
C7	0.058 (2)	0.066 (2)	0.043 (2)	-0.0020 (18)	-0.0017 (17)	0.0023 (17)
C8	0.085 (3)	0.054 (2)	0.058 (3)	0.004 (2)	-0.002 (2)	0.0019 (19)
C9	0.0523 (19)	0.0548 (19)	0.053 (2)	-0.0071 (16)	-0.0062 (16)	0.0070 (17)
C10	0.059 (2)	0.059 (2)	0.063 (2)	-0.0070 (19)	-0.0017 (18)	0.0081 (18)
C11	0.058 (2)	0.0498 (19)	0.059 (2)	-0.0076 (16)	-0.0035 (18)	0.0008 (17)
C12	0.079 (3)	0.087 (3)	0.083 (3)	0.016 (3)	-0.014 (2)	-0.019 (2)
C13	0.067 (3)	0.096 (4)	0.147 (5)	0.013 (3)	-0.010 (3)	-0.043 (4)
C14	0.113 (4)	0.079 (4)	0.140 (6)	-0.025 (3)	0.051 (4)	-0.034 (4)
C15	0.189 (7)	0.075 (3)	0.083 (4)	-0.008 (4)	0.043 (4)	-0.005 (3)
C16	0.122 (4)	0.075 (3)	0.065 (3)	0.014 (3)	0.000 (3)	0.000 (2)
C17	0.162 (5)	0.111 (4)	0.067 (3)	-0.006 (4)	0.029 (3)	0.008 (3)
C18	0.058 (2)	0.096 (3)	0.055 (2)	0.002 (2)	-0.010 (2)	-0.011 (2)
C19	0.058 (2)	0.063 (2)	0.0443 (19)	-0.0005 (17)	-0.0054 (16)	-0.0081 (16)
C20	0.084 (3)	0.076 (3)	0.050(2)	-0.016 (2)	-0.001 (2)	-0.0069 (19)
C21	0.074 (2)	0.068 (2)	0.048 (2)	-0.012 (2)	-0.0036 (18)	-0.0025 (18)
C22	0.095 (3)	0.070 (3)	0.074 (3)	-0.003 (2)	-0.027 (3)	0.003 (2)
C23	0.119 (4)	0.064 (3)	0.088 (3)	-0.004 (3)	-0.018 (3)	0.001 (2)
C24	0.108 (4)	0.068 (3)	0.076 (3)	-0.017 (3)	-0.014 (3)	-0.011 (2)
C25	0.077 (3)	0.099 (3)	0.088 (3)	-0.011 (3)	-0.018 (3)	-0.016 (3)
C26	0.070 (3)	0.081 (3)	0.087 (3)	-0.002 (2)	-0.003 (2)	-0.017 (2)
C27	0.091 (7)	0.21 (3)	0.107 (10)	0.071 (13)	0.013 (7)	-0.021 (13)
C27'	0.091 (15)	0.21 (5)	0.11 (2)	0.07 (3)	0.013 (15)	-0.02 (3)

Geometric parameters (Å, °)

O1—C1	1.228 (4)	C12—C13	1.371 (7)
O2—C7	1.214 (4)	C12—H12	0.9300
O3—C8	1.263 (5)	C13—C14	1.343 (8)
O3—C17	1.464 (6)	С13—Н13	0.9300
O4—C8	1.25 (4)	C14—C15	1.348 (8)
O4'—C8	1.08 (3)	C14—H14	0.9300
O5—C18	1.304 (5)	C15—C16	1.367 (7)
O5—C27	1.488 (18)	С15—Н15	0.9300
O5—C27'	1.59 (5)	С16—Н16	0.9300
O6—C18	1.186 (4)	C17—H17A	0.9600
N1—C2	1.333 (4)	С17—Н17В	0.9600
N1—C6	1.330 (4)	С17—Н17С	0.9600
N2—C1	1.325 (4)	C18—C19	1.498 (5)
N2—C9	1.441 (4)	C19—C20	1.514 (5)

	0.8600	C10 U10	0.0800
N2—112 N3—C7	1 327 (5)	C_{19}	1.485(5)
N3_C19	1.527(5) 1.445(4)	C20 C21	0.9700
N3_H3	0.8600	C20—H20B	0.9700
C1-C2	1 493 (5)	C21—C26	1 357 (6)
$C_2 = C_3$	1 373 (5)	$C_{21} = C_{20}$	1.337 (6)
C_{2}^{-} C_{3}^{-} C_{4}^{-}	1.371 (5)	$C_{22} = C_{23}$	1.367 (6)
C3_H3A	0.9300	С22—Н22	0.9300
C4—C5	1 374 (5)	C23—C24	1343(7)
C4—H4	0.9300	C23—H23	0.9300
C5-C6	1 384 (5)	C_{24} C_{25} C_{24} C_{25}	1 349 (7)
C5—H5	0.9300	C24—H24	0.9300
C6-C7	1 492 (5)	C_{25} C_{26} C_{26}	1 384 (6)
C_{8}	1.501 (6)	C25 C25	0.9300
C_{9} C_{10}	1.501 (0)	C26—H26	0.9300
С9—H9	0.9800	C27_H27A	0.9500
C10_C11	1 499 (5)	C27—H27B	0.9600
C10_H10A	0.9700	C27—H27C	0.9600
C10_H10B	0.9700	C27' H27D	0.9600
C11-C16	1 361 (5)	C27' H27D	0.9600
C_{11} C_{12}	1 368 (5)	C27' H27E	0.9600
C^{2} C^{2} C^{17}	117.7 (4)	$C_{12} = C_{14} = C_{15}$	1197(5)
$C_{8} = O_{3} = C_{1}^{7}$	11/./(4)	$C_{13} - C_{14} - C_{15}$	118.7 (5)
C18 - 05 - C27	110.0 (9)	C15—C14—H14	120.7
$C_{10} = 05 = 027$	103(2)	C13 - C14 - H14	120.7
$C_0 = N_1 = C_2$	117.7 (3)	$C_{14} = C_{15} = C_{16}$	120.9 (3)
$C_1 = N_2 = U_2$	124.2 (3)	С14—С15—Н15	119.5
$C_1 - N_2 - H_2$	117.9	C10-C15-H15	119.3
$C_{2} = N_{2} = C_{10}$	117.9		121.1 (3)
C7 N3 - C19	120.5 (3)	C11-C16-H16	119.5
$C_1 = N_2 = H_2$	119.7	C13 - C10 - H10	119.5
C19 - N3 - H3	119.7	$O_2 = C_1 / - H_1 / A$	109.5
$O_1 = C_1 = N_2$	123.9(3)		109.5
OI = CI = C2	121.1(3)	$\Pi / A - C / - \Pi / B$	109.5
$N_2 - C_1 - C_2$	113.0(3)		109.5
N1 = C2 = C3	122.9(3)	$\frac{11}{A} - \frac{17}{B} - \frac{17}{B} = \frac{17}{B} $	109.5
NI = C2 = C1	110.1 (3)	HI/B - CI/-HI/C	109.5
$C_3 = C_2 = C_1$	120.9(3)	06 - 018 - 05	125.3(4)
$C_4 = C_3 = C_2$	110.9 (5)	00 - 018 - 019	120.0(4)
C_{4}	120.5	$N_{2} = C_{10} = C_{19}$	110.4(3)
$C_2 = C_3 = \Pi_3 A$	120.5	$N_{3} = C_{19} = C_{18}$	111.1(3)
$C_3 = C_4 = C_3$	119.1 (4)	(13 - (19 - (20)))	110.3(3)
$C_5 = C_4 = H_4$	120.5	N3 C10 H10	107.7
C_{3}	120.5	13 - 19 - 119	107.7
$C_4 = C_5 = C_0$	110.3 (4)	C20 C10 H10	107.7
СС	120.0	$C_{20} - C_{19} - C_{19}$	107.7
N1_C6_C5	120.0	C21_C20_C17	108.8
N1_C6_C7	123.0(3)	C_{10} C_{20} H_{20A}	108.0
$\frac{1}{2}$	11/.1 (3)	$C_{19} - C_{20} - H_{20} R_{10}$	100.0
$C_{0} = C_{0} = C_{1}$	117.0 (3)	C21-C20-I120D	100.0

O2—C7—N3	123.2 (3)	C19—C20—H20B	108.8
O2—C7—C6	121.2 (3)	H20A—C20—H20B	107.7
N3—C7—C6	115.6 (3)	C26—C21—C22	116.8 (4)
O4'—C8—O3	118 (3)	C26—C21—C20	121.4 (4)
O4—C8—O3	121.1 (7)	C22—C21—C20	121.7 (4)
O4'—C8—C9	121 (3)	C23—C22—C21	122.0 (4)
04—C8—C9	123.9 (7)	С23—С22—Н22	119.0
O3—C8—C9	113.3 (4)	C21—C22—H22	119.0
N2—C9—C8	109.5 (3)	C24—C23—C22	119.9 (5)
N2-C9-C10	111.0 (3)	С24—С23—Н23	120.0
C8—C9—C10	111.2 (3)	С22—С23—Н23	120.0
N2—C9—H9	108.4	C23—C24—C25	119.7 (4)
С8—С9—Н9	108.4	C23—C24—H24	120.1
С10—С9—Н9	108.4	C25—C24—H24	120.1
C11—C10—C9	113.8 (3)	C24—C25—C26	120.4 (4)
C11—C10—H10A	108.8	С24—С25—Н25	119.8
C9—C10—H10A	108.8	С26—С25—Н25	119.8
C11—C10—H10B	108.8	C21—C26—C25	121.1 (4)
С9—С10—Н10В	108.8	С21—С26—Н26	119.4
H10A—C10—H10B	107.7	С25—С26—Н26	119.4
C16—C11—C12	117.5 (4)	O5—C27—H27A	109.5
C16—C11—C10	121.8 (4)	O5—C27—H27B	109.5
C12-C11-C10	120.7 (4)	O5—C27—H27C	109.5
C11—C12—C13	120.7 (5)	O5—C27'—H27D	109.5
C11—C12—H12	119.7	O5—C27'—H27E	109.5
C13—C12—H12	119.7	H27D—C27'—H27E	111.0
C14—C13—C12	121.2 (5)	O5—C27'—H27F	109.5
C14—C13—H13	119.4	H27D—C27'—H27F	109.5
C12—C13—H13	119.4	H27E—C27'—H27F	109.5
C9—N2—C1—O1	1.6 (5)	C8—C9—C10—C11	172.0 (3)
C9—N2—C1—C2	-175.8 (3)	C9—C10—C11—C16	79.1 (5)
C6—N1—C2—C3	-3.4 (5)	C9—C10—C11—C12	-100.7 (4)
C6—N1—C2—C1	173.9 (3)	C16-C11-C12-C13	0.4 (6)
01—C1—C2—N1	-159.1 (3)	C10-C11-C12-C13	-179.8 (4)
N2—C1—C2—N1	18.4 (4)	C11—C12—C13—C14	-0.7 (8)
O1—C1—C2—C3	18.2 (5)	C12—C13—C14—C15	0.5 (8)
N2—C1—C2—C3	-164.3 (3)	C13—C14—C15—C16	0.1 (8)
N1—C2—C3—C4	3.0 (5)	C12—C11—C16—C15	0.2 (7)
C1—C2—C3—C4	-174.1 (3)	C10—C11—C16—C15	-179.7 (4)
C2—C3—C4—C5	-0.6 (6)	C14—C15—C16—C11	-0.4 (8)
C3—C4—C5—C6	-1.3 (6)	C27—O5—C18—O6	9(3)
C2—N1—C6—C5	1.3 (5)	C27'—O5—C18—O6	-27 (4)
C2—N1—C6—C7	-175.5 (3)	C27—O5—C18—C19	-167 (2)
C4—C5—C6—N1	1.0 (6)	C27'—O5—C18—C19	157 (4)
C4—C5—C6—C7	177.7 (3)	C7—N3—C19—C18	-60.0 (4)
C19—N3—C7—O2	-8.3 (6)	C'/—N3—C19—C20	175.2 (3)
C19—N3—C7—C6	169.9 (3)	06—C18—C19—N3	134.5 (5)
N1—C6—C7—O2	174.0 (3)	O5-C18-C19-N3	-49.4 (5)
C5—C6—C7—O2	-3.0 (6)	O6—C18—C19—C20	-101.5 (5)

N1—C6—C7—N3	-4.3 (5)	O5-C18-C19-C20	74.6 (5)
C5—C6—C7—N3	178.8 (3)	N3-C19-C20-C21	175.3 (3)
C17—O3—C8—O4'	-33 (9)	C18—C19—C20—C21	50.9 (5)
C17—O3—C8—O4	12 (3)	C19—C20—C21—C26	76.9 (5)
C17—O3—C8—C9	177.0 (4)	C19—C20—C21—C22	-101.0 (5)
C1—N2—C9—C8	-102.6 (4)	C26—C21—C22—C23	0.0 (7)
C1—N2—C9—C10	134.3 (3)	C20-C21-C22-C23	178.0 (4)
O4'—C8—C9—N2	24 (9)	C21—C22—C23—C24	0.6 (8)
O4—C8—C9—N2	-23 (3)	C22—C23—C24—C25	-1.2 (7)
O3—C8—C9—N2	172.4 (3)	C23—C24—C25—C26	1.2 (8)
O4'—C8—C9—C10	147 (9)	C22—C21—C26—C25	0.0 (6)
O4—C8—C9—C10	100 (3)	C20-C21-C26-C25	-178.0 (4)
O3—C8—C9—C10	-64.7 (5)	C24—C25—C26—C21	-0.6 (7)
N2-C9-C10-C11	-65.9 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
N2—H2···O1 ⁱ	0.86	2.37	3.178 (4)	157
N3—H3···O1 ⁱ	0.86	2.40	3.190 (4)	154
Symmetry codes: (i) $x+1/2, -y+1/2, -z$.				

Fig. 1